
Backend.AI Client SDK for Python

Documentation

Release 20.03.7

Lablup Inc.

Oct 27, 2020

GETTING STARTED

1 Quickstart 3

2 Getting Started 5

2.1 Installation . 5

2.1.1 Linux/macOS . 5

2.1.2 Windows . 6

2.1.3 Verification . 6

2.2 Client Configuration . 6

2.3 CLI Quickstart . 7

2.3.1 Display Help Text . 7

2.3.2 Login . 7

2.3.3 Creating and Using Compute Session 7

Query running compute sessions . 8

Execute inline code . 8

Execute file . 9

Run code with specific resources . 9

2.3.4 Data Storage Folder . 12

Create a storage folder (virtual folder) 12

Using virtual folder . 12

2.3.5 Using Interactive Apps . 14

API (KeyPair) Connection Mode . 14

Start a compute session . 14

Launch Terminal . 15

Launch Jupyter Notebook . 15

SSH into the Compute Session . 17

3 Command-line Interface 19

3.1 Configuration . 19

3.1.1 Session Mode . 19

3.1.2 API Mode . 19

3.1.3 Checking out the current configuration 20

3.2 Compute Sessions . 20

i

3.2.1 Listing sessions . 20

3.2.2 Running simple sessions . 21

3.2.3 Running sessions with accelerators . 22

3.2.4 Terminating or cancelling sessions . 22

3.3 Container Applications . 23

3.3.1 Starting a session and connecting to its Jupyter Notebook 23

3.3.2 Accessing sessions via a web terminal 23

3.3.3 Accessing sessions via native SSH/SFTP 24

3.4 Storage Management . 25

3.4.1 Creating vfolders and managing them 25

3.4.2 File transfers and management . 26

3.4.3 Running sessions with storages . 26

3.4.4 Creating default files for kernels . 27

3.5 Advanced Code Execution . 27

3.5.1 Running concurrent experiment sessions 27

3.6 Session Templates . 28

3.6.1 Creating and starting session template 28

3.6.2 Full syntax for task template . 30

4 Developer Reference 31

4.1 Developer Guides . 31

4.1.1 Client Session . 31

4.1.2 Examples . 33

Synchronous-mode execution . 33

Asynchronous-mode Execution . 36

4.1.3 Testing . 37

Unit Tests . 37

Integration Tests . 37

4.2 High-level Function Reference . 39

4.2.1 Admin Functions . 39

4.2.2 Agent Functions . 39

4.2.3 Auth Functions . 40

4.2.4 Configuration . 41

4.2.5 KeyPair Functions . 45

4.2.6 Manager Functions . 47

4.2.7 Scaling Group Functions . 50

4.2.8 ComputeSession Functions . 54

4.2.9 Session Template Functions . 59

4.2.10 Virtual Folder Functions . 60

4.3 Low-level SDK Reference . 66

4.3.1 Base Function . 66

4.3.2 Request API . 66

4.3.3 Exceptions . 69

ii

4.3.4 Miscellaneous Utilities . 69

5 Indices and tables 71

Python Module Index 73

Index 75

iii

iv

Backend.AI Client SDK for Python Documentation, Release 20.03.7

This is the documentation for the Python Client SDK which implements the Backend.AI

API.

GETTING STARTED 1

https://docs.backend.ai/en/latest/index.html
https://docs.backend.ai/en/latest/index.html

Backend.AI Client SDK for Python Documentation, Release 20.03.7

2 GETTING STARTED

CHAPTER

ONE

QUICKSTART

Python 3.6 or higher is required.

You can download its official installer from python.org, or use a 3rd-party package/version

manager such as homebrew, miniconda, or pyenv. It works on Linux, macOS, and Windows.

We recommend to create a virtual environment for isolated, unobtrusive installation of the

client SDK library and tools.

$ python3 -m venv venv-backend-ai

$ source venv-backend-ai/bin/activate

(venv-backend-ai) $

Then install the client library from PyPI.

(venv-backend-ai) $ pip install -U pip setuptools

(venv-backend-ai) $ pip install backend.ai-client

Set your API keypair as environment variables:

(venv-backend-ai) $ export BACKEND_ACCESS_KEY=AKIA...

(venv-backend-ai) $ export BACKEND_SECRET_KEY=...

And then try the first commands:

(venv-backend-ai) $ backend.ai --help

...

(venv-backend-ai) $ backend.ai ps

...

Check out more details about client configuration, the command-line examples, and SDK

code examples.

3

https://www.python.org/downloads/
http://brew.sh/index_ko.html
http://conda.pydata.org/miniconda.html
https://github.com/pyenv/pyenv

Backend.AI Client SDK for Python Documentation, Release 20.03.7

4 Chapter 1. Quickstart

CHAPTER

TWO

GETTING STARTED

2.1 Installation

2.1.1 Linux/macOS

We recommend using pyenv to manage your Python versions and virtual environments to

avoid conflicts with other Python applications.

Create a new virtual environment (Python 3.6 or higher) and activate it on your shell. Then

run the following commands:

pip install -U pip setuptools

pip install -U backend.ai-client-py

Create a shell script my-backendai-env.sh like:

export BACKEND_ACCESS_KEY=...

export BACKEND_SECRET_KEY=...

export BACKEND_ENDPOINT=https://my-precious-cluster

export BACKEND_ENDPOINT_TYPE=api

Run this shell script before using backend.ai command.

Note: The console-server users should set BACKEND_ENDPOINT_TYPE to session. For de-

tails, check out the client configuration document .

5

https://github.com/pyenv/pyenv

Backend.AI Client SDK for Python Documentation, Release 20.03.7

2.1.2 Windows

We recommend using the Anaconda Navigator to manage your Python environments with

a slick GUI app.

Create a new environment (Python 3.6 or higher) and launch a terminal (command prompt).

Then run the following commands:

python -m pip install -U pip setuptools

python -m pip install -U backend.ai-client-py

Create a batch file my-backendai-env.bat like:

chcp 65001

set PYTHONIOENCODING=UTF-8

set BACKEND_ACCESS_KEY=...

set BACKEND_SECRET_KEY=...

set BACKEND_ENDPOINT=https://my-precious-cluster

set BACKEND_ENDPOINT_TYPE=api

Run this batch file before using backend.ai command.

Note that this batch file switches your command prompt to use the UTF-8 codepage for

correct display of special characters in the console logs.

2.1.3 Verification

Run backend.ai ps command and check if it says “there is no compute sessions running”

or something similar.

If you encounter error messages about “ACCESS_KEY”, then check if your batch/shell

scripts have the correct environment variable names.

If you encounter network connection error messages, check if the endpoint server is con-

figured correctly and accessible.

2.2 Client Configuration

The configuration for Backend.AI API includes the endpoint URL prefix, API keypairs (ac-

cess and secret keys), and a few others.

There are two ways to set the configuration:

1. Setting environment variables before running your program that uses this SDK. This

applies to the command-line interface as well.

2. Manually creating APIConfig instance and creating sessions with it.

6 Chapter 2. Getting Started

https://www.anaconda.com/download/

Backend.AI Client SDK for Python Documentation, Release 20.03.7

The list of configurable environment variables are:

• BACKEND_ENDPOINT

• BACKEND_ENDPOINT_TYPE

• BACKEND_ACCESS_KEY

• BACKEND_SECRET_KEY

• BACKEND_VFOLDER_MOUNTS

Please refer the parameter descriptions of APIConfig’s constructor for what each environ-

ment variable means and what value format should be used.

2.3 CLI Quickstart

2.3.1 Display Help Text

You can print the help text for a command by suffixing -h or --help.

$ backend.ai <cmd> -h

$ backend.ai <cmd> --help

2.3.2 Login

Login to gain access to the Backend.AI server. BACKEND_ENDPOINT_TYPE should be set to

session, and you need to specify BACKEND_ENDPOINT correctly.

$ export BACKEND_ENDPOINT_TYPE=session

$ export BACKEND_ENDPOINT=<backend-session-endpoint>

$ backend.ai login

User ID: myaccount@example.com

Password:

XXX Login succeeded.

2.3.3 Creating and Using Compute Session

Backend.AI’s compute session provides a dedicated sandbox environment to run machine

learning code and do any other tasks which are available for Linux.

2.3. CLI Quickstart 7

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Query running compute sessions

$ backend.ai ps

There are no matching sessions.

Execute inline code

Specify inline code with -c option. This will create a new compute session and execute the

code. You can destroy the compute session by rm command.

$ backend.ai run -c "print('hello')" \

lablup/python-tensorflow:2.3-py36-cuda10.1

Session name prefix: pysdk-6dd0b298df

XXX [0] Session pysdk-6dd0b298df is ready (domain=default, group=default).

hello

XXX [0] Execution finished. (exit code = 0)

$ backend.ai ps

Session Name Task/Kernel ID Image

→˓ Type Status Status Info Last

→˓updated Result

---------------- ------------------------------------ ---------------------------

→˓------------------------------- ----------- -------- ------------- ----------

→˓---------------------- ---------

pysdk-6dd0b298df 106779ac-a997-4456-8612-fc6eca8bd2d5 index.docker.io/lablup/

→˓python-tensorflow:2.3-py36-cuda10.1 INTERACTIVE RUNNING 2020-

→˓10-27T05:05:15.105235+00:00 UNDEFINED

$ backend.ai rm pysdk-6dd0b298df

XXX Done.

$ backend.ai ps

There are no matching sessions.

Note: If the code execution failed, you may not belong to the default domain and group.

You can check your domain and group by:

$ backend.ai admin domain

$ backend.ai admin groups

To specify non-default domain and group,

$ backend.ai run -d <domain-name> -g <group-name> \

-c "print('hello')" lablup/python-tensorflow:2.3-py36-cuda10.1

8 Chapter 2. Getting Started

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Execute file

Specify a local code file (mycode.py below) and a command to execute on the compute

session with --exec parameter (--exec "python mycode.py"). The local code will be up-

loaded to the compute session and be executed by the command given in --exec.

With --rm option, the compute session will be automatically terminated after executing the

code.

$ backend.ai run --rm --exec "python mycode.py" \

lablup/python-tensorflow:2.3-py36-cuda10.1 mycode.py

Session name prefix: pysdk-be065c2666

XXX [0] Session pysdk-be065c2666 is ready (domain=default, group=default).

Uploading files: 100%|| 25.0/25.0 [00:00<00:00, 157bytes/s, file=mycode.py]

XXX [0] Uploading done.

XXX [0] Clean finished. (exit code = 0)

python-kernel: python-kernel: skipping the build phase due to missing "setup.py"

→˓file

XXX [0] Build finished. (exit code = 0)

this is my code

XXX [0] Execution finished. (exit code = 0)

XXX [0] Cleaned up the session.

Run code with specific resources

Backend.AI offers virtualized compute resources per compute session, such as CPU core(s),

main memory, GPU(s), and etc. To specify recources for a compute session, you can rely on

-r <resource>=<value> option.

Backend.AI offers a fractional GPU sharing (TM), so you can allocate a fraction of single

physical GPU to your compute session.

Note: Fractional GPU sharing is only available on Backend.AI Enterprise edition. For open

source version, you can only allocate GPUs as a physiclal unit.

Let’s execute a code to check CPU and memory status inside a compute session. Save the

python code below on your local machine with the file name main.py

def cpu_number(a,b):

return list(range(a, b+1))

with open("/sys/fs/cgroup/memory/memory.limit_in_bytes") as fd:

contents = fd.read()

print("Memory: {} GB\n * Real value: {}".format(int(contents) /1024/1024/1024,

→˓ contents))
(continues on next page)

2.3. CLI Quickstart 9

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

with open("/sys/fs/cgroup/cpuset/cpuset.cpus") as fd:

contents = fd.read()

cpu_numbers = cpu_number(*[int(x.strip()) for x in contents.split('-')]) \

if '-' in contents else [int(contents.strip())]

print("Number of CPU(s): {}\n * CPU core number(s) {}".format(len(cpu_

→˓numbers), cpu_numbers))

And run the code to check the resources. Here, we specified 3 cpus, 2g memory, and 0.5

fraction of GPU unit (cuda.shares option). For open source version, you must specify GPU

resources with cuda.device option, like cuda.device=2 to allocate 2 physical GPUs to the

compute session.

Note: If the file name is main.py, you do not need to supply --exec parameter since

main.py is the default file name.

$ backend.ai run -r cpu=3 -r mem=2g -r cuda.shares=0.5 \

lablup/python-tensorflow:2.3-py36-cuda10.1 main.py

Session name prefix: pysdk-59405ab5a0

XXX [0] Session pysdk-b53bbf9abb is ready (domain=default, group=default).

Uploading files: 100%|| 552/552 [00:00<00:00, 6.90kbytes/s, file=main.py]

XXX [0] Uploading done.

XXX [0] Clean finished. (exit code = 0)

python-kernel: python-kernel: skipping the build phase due to missing "setup.py"

→˓file

XXX [0] Build finished. (exit code = 0)

Memory: 1.9375 GB

* Real value: 2080374784

Number of CPU(s): 3

* CPU core number(s) [0, 1, 2]

XXX [0] Execution finished. (exit code = 0)

You see the result matches the resources specified by -r option.

Now, check the allocated amount of GPU. This time, by using -t <session-name> option,

we can recycle the already running compute session, not creating new one. Also, note that

we specified --exec option to execute nvidia-smi command instead of executing main.py.

$ backend.ai ps -f name,occupied_slots,status,image

Session Name Occupied Resource Status

→˓ Image

---------------- --- --------

→˓ --

pysdk-b53bbf9abb {"cpu": "3", "mem": "2147483648", "cuda.shares": "0.5"} RUNNING

→˓ index.docker.io/lablup/python-tensorflow:2.3-py36-cuda10.1 (continues on next page)

10 Chapter 2. Getting Started

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

$ backend.ai run -t pysdk-b53bbf9abb --exec "nvidia-smi" \

lablup/python-tensorflow:2.3-py36-cuda10.1 main.py

Session name prefix: pysdk-b53bbf9abb

XXX [0] Reusing session pysdk-b53bbf9abb...

Uploading files: 100%|| 552/552 [00:00<00:00, 6.95kbytes/s, file=main.py]

XXX [0] Uploading done.

XXX [0] Clean finished. (exit code = 0)

python-kernel: python-kernel: skipping the build phase due to missing "setup.py"

→˓file

XXX [0] Build finished. (exit code = 0)

Tue Oct 27 05:40:22 2020

+---+

| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 CUDA GPU Off | 00000000:01:00.0 Off | N/A |

| 0% 47C P8 11W / 151W | 16MiB / 2029MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

+---+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

XXX [0] Execution finished. (exit code = 0)

Note that only half of the GPU memory is allocated (~2 GiB), which shows fractional GPU

sharing is working.

Note: The amount of 1 fraction GPU unit (fGPU) may differ depending on the server

setting. The exact GPU unit configuration should be check by the admins, if needed.

If you’re done, destroy the compute session.

$ backend.ai rm pysdk-b53bbf9abb

XXX Done.

2.3. CLI Quickstart 11

Backend.AI Client SDK for Python Documentation, Release 20.03.7

2.3.4 Data Storage Folder

By default, data (files and folders) created and updated inside a compute session are

volatile, meaning they are lost when the session is terminated. To keep data after session

termination, you can save data to a data storage folder, which we call virtual folder.

Create a storage folder (virtual folder)

Backend.AI supports multiple file systems simultaneously, so to create a virtual folder, you

need to query and choose what host to use beforehand.

To query and create a virtual folder, follow the steps below.

$ backend.ai vfolder list

There is no virtual folders created yet.

$ backend.ai vfolder list-hosts # list possible virtual folder hosts

Default vfolder host: local

Usable hosts: local # in this case, "local" is our host

$ backend.ai vfolder create myfolder local

Virtual folder "myfolder" is created.

$ backend.ai vfolder list

Name ID Owner Permission Owership Type

→˓ Usage Mode User Group

-------- -------------------------------- ------- ------------ ---------------

→˓ ------------ ------------------------------------ -------

myfolder 154523348d844cd1bddbfaa43024a823 True rw user

→˓ general dfa9da54-4b28-432f-be29-c0d680c7a412

Using virtual folder

It’s time to create a compute session with virtual folder mounted. In the example below,

-m option is used to mount just created myfolder. This folder is mounted under /home/

work/ inside the compute session. Let’s check this is true by executing ls command on

/home/work inside the compute session.

$ backend.ai run --rm --exec "ls /home/work" \

lablup/python-tensorflow:2.3-py36-cuda10.1 main.py

Session name prefix: pysdk-ffa1b5d3be

XXX [0] Session pysdk-ffa1b5d3be is ready (domain=default, group=default).

Uploading files: 100%|| 552/552 [00:00<00:00, 6.80kbytes/s, file=main.py]

XXX [0] Uploading done.

XXX [0] Clean finished. (exit code = 0)

python-kernel: python-kernel: skipping the build phase due to missing "setup.py"

→˓file

XXX [0] Build finished. (exit code = 0)

(continues on next page)

12 Chapter 2. Getting Started

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

bootstrap.sh

id_container

main.py

XXX [0] Execution finished. (exit code = 0)

XXX [0] Cleaned up the session.

$

$ backend.ai run --rm -m myfolder --exec "ls /home/work" \

lablup/python-tensorflow:2.3-py36-cuda10.1 main.py

Session name prefix: pysdk-7adc7a4cf5

XXX [0] Session pysdk-7adc7a4cf5 is ready (domain=default, group=default).

Uploading files: 100%|| 552/552 [00:00<00:00, 6.04kbytes/s, file=main.py]

XXX [0] Uploading done.

XXX [0] Clean finished. (exit code = 0)

python-kernel: python-kernel: skipping the build phase due to missing "setup.py"

→˓file

XXX [0] Build finished. (exit code = 0)

bootstrap.sh

id_container

main.py

myfolder

XXX [0] Execution finished. (exit code = 0)

XXX [0] Cleaned up the session.

Note that /home/work/myfolder only appears when -m option is used. If you create a file

inside virtual folder (myfolder in this case), it will be preserved after compute session is

terminated (--rm). You can check this by using vfolder ls command, which displays the

file/directory inside a specific virtual folder.

$ backend.ai vfolder ls myfolder

XXX Retrived.

file name size modified mode

----------- ------ ---------- ------

$ backend.ai run --rm -m myfolder --exec "touch /home/work/myfolder/file-preserved

→˓" \

lablup/python-tensorflow:2.3-py36-cuda10.1 main.py

Session name prefix: pysdk-95c788a7b2

XXX [0] Session pysdk-95c788a7b2 is ready (domain=default, group=default).

Uploading files: 100%|| 552/552 [00:00<00:00, 5.73kbytes/s, file=main.py]

XXX [0] Uploading done.

XXX [0] Clean finished. (exit code = 0)

python-kernel: python-kernel: skipping the build phase due to missing "setup.py"

→˓file

XXX [0] Build finished. (exit code = 0)

XXX [0] Execution finished. (exit code = 0)

XXX [0] Cleaned up the session.

$ backend.ai vfolder ls myfolder
(continues on next page)

2.3. CLI Quickstart 13

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

backend.ai vfolder ls myfolder

XXX Retrived.

file name size modified mode

-------------- ------ -------------------- ----------

file-preserved 0 Oct 27 2020 15:28:40 -rw-r--r--

Warning: Keep in mind that lf you want to preserve any data generated from the

compute session, you must mount at least one virtual folder, and save the data under

it.

2.3.5 Using Interactive Apps

Backend.AI CLI provides web-based interactive apps, but for now, this feature is only avail-

able in API (KeyPair) connection mode.

API (KeyPair) Connection Mode

In API connection mode, you don’t need to login with your email and password, but need

to provide additional environment variables. The endpoint for API connection mode and

access-/secret-key should be got from your Backend.AI admins.

$ export BACKEND_ENDPOINT_TYPE=api

$ # This endpoint may differ from the one used for session mode.

$ export BACKEND_ENDPOINT=<backend-api-endpoint>

$ export BACKEND_ACCESS_KEY=<access-key>

$ export BACKEND_SECRET_KEY=<secret-key>

Start a compute session

You can create a compute session without executing any code. Note that there is no --rm

option in the example below, and we specified session name with -t option.

$ backend.ai start -t app-test -m myfolder \

-r cpu=4 -r mem=8g -r cuda.shares=1 \

lablup/python-tensorflow:2.3-py36-cuda10.1

Session ID 70e265d4-52b5-4084-86d0-b6c2625c5e4a is created and ready.

This session provides the following app services: jupyter, jupyterlab, vscode,

→˓tensorboard, sshd, ttyd

14 Chapter 2. Getting Started

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Launch Terminal

From the last message of the above code block, you can see that the session reports app

services available, such as jupyter, ttyd, etc. These are the list of interactive apps, mostly

provide web-based easy-to-use UI. Here, let’s launch a web-terminal (ttyd) using app com-

mand.

$ backend.ai app app-test ttyd

A local proxy to the application "ttyd" provided by the session "app-test" is

→˓available at:

http://127.0.0.1:8080

Open your web broswer, and type http://127.0.0.1:8080 in the URL bar. You are now con-

nected to the compute session through web-based terminal. Every command you typically

use from a terminal will work.

Web terminal deploys tmux by default, so you can use powerful features provided by tmux,

if you want.

If you’re done, press Ctrl-C to cancel the ttyd web service.

Launch Jupyter Notebook

With -b (bind) option, you can launch the app from any local port.

$ backend.ai app -b 9123 app-test jupyter

A local proxy to the application "jupyter" provided by the session "app-test" is

→˓available at:

http://127.0.0.1:9123

This time, open http://127.0.0.1:9123 from your browser. You can now use Jupyter Note-

book app. No need to install python.

2.3. CLI Quickstart 15

http://127.0.0.1:8080
http://127.0.0.1:9123

Backend.AI Client SDK for Python Documentation, Release 20.03.7

A ML code can also be executed directly without installing 3rd party packages.

If you’re done, press Ctrl-C to cancel the Jupyter Notebook service.

16 Chapter 2. Getting Started

Backend.AI Client SDK for Python Documentation, Release 20.03.7

SSH into the Compute Session

Backend.AI supports OpenSSH-based public key connection (RSA2048). A SSH private key

is placed at /home/work/id_container for user’s convenience, so you can establish real

SSH connection into the compute session.

Note: To access with a client such as PuTTY on Windows, a private key (id_container)

must be converted into a ppk file through a program such as PuTTYgen. You can refer to

the following link for the conversion method: https://wiki.filezilla-project.org/Howto.

$ # download /home/work/id_container

$ backend.ai download app-test id_container

$ mv id_container ~/.ssh/id_container

$ backend.ai app app-test sshd -b 9922

A local proxy to the application "sshd" provided by the session "app-test" is

→˓available at:

http://127.0.0.1:9922

In another terminal on the same PC:

$ ssh -o StrictHostKeyChecking=no \

> -o UserKnownHostsFile=/dev/null \

> -i ~/.ssh/id_container \

> work@localhost -p 9922

Warning: Permanently added '[localhost]:9922' (RSA) to the list of known hosts.

work@dab597c32a10:~$ ls -al myfolder

total 0

drwxr-xr-x 2 work work 28 Oct 27 06:28 .

drwxr-xr-x 9 work work 217 Oct 27 06:57 ..

-rw-r--r-- 1 work work 0 Oct 27 06:28 file-preserved

work@dab597c32a10:~$ pwd

/home/work

work@dab597c32a10:~$ whoami

work

work@dab597c32a10:~$

You can easily open sFTP connection with the same way.

2.3. CLI Quickstart 17

https://wiki.filezilla-project.org/Howto

Backend.AI Client SDK for Python Documentation, Release 20.03.7

18 Chapter 2. Getting Started

CHAPTER

THREE

COMMAND-LINE INTERFACE

3.1 Configuration

Note: Please consult the detailed usage in the help of each command (use -h or --help

argument to display the manual).

Check out the client configuration for configurations via environment variables.

3.1.1 Session Mode

When the endpoint type is "session", you must explicitly login and logout into/from the

console server.

$ backend.ai login

Username: myaccount@example.com

Password:

XXX Login succeeded.

$ backend.ai ... # any commands

$ backend.ai logout

XXX Logout done.

3.1.2 API Mode

After setting up the environment variables, just run any command:

$ backend.ai ...

19

Backend.AI Client SDK for Python Documentation, Release 20.03.7

3.1.3 Checking out the current configuration

Run the following command to list your current active configurations.

$ backend.ai config

3.2 Compute Sessions

Note: Please consult the detailed usage in the help of each command (use -h or --help

argument to display the manual).

3.2.1 Listing sessions

List the session owned by you with various status filters. The most recently status-changed

sessions are listed first. To prevent overloading the server, the result is limited to the first

10 sessions and it provides a separate --all option to paginate further sessions.

backend.ai ps

The ps command is an alias of the following admin sessions command. If you have the

administrator privilege, you can list sessions owned by other users by adding --access-key

option here.

backend.ai admin sessions

Both commands offer options to set the status filter as follows. For other options, please

consult the output of --help.

Option Included Session Status

(no option) PENDING, PREPARING, RUNNING, RESTARTING, TERMINATING, RESIZING,

SUSPENDED, and ERROR.

--running PREPARING, PULLING, and RUNNING.

--dead CANCELLED and TERMINATED.

Both commands offer options to specify which fields of sessions should be printed as fol-

lows.

20 Chapter 3. Command-line Interface

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Option Included Session Fields

(no option) Session ID, Owner, Image, Type,

Status, Status Info, Last updated, and Result.

--id-only Session ID.

--detail Session ID, Owner, Image, Type,

Status, Status Info, Last updated, Result,

Tag, Created At, Occupied Resource, Used Memory (MiB),

Max Used Memory (MiB), and CPU Using (%).

-f, --format Specified fields by user.

Note: Fields for -f/--format option can be displayed by specifying comma-separated

parameters.

Available parameters for this option are: id, status, status_info, created_at,

last_updated, result, image, type, task_id, tag, occupied_slots, used_memory,

max_used_memory, cpu_using.

For example:

backend.ai admin session --format id,status,cpu_using

3.2.2 Running simple sessions

The following command spawns a Python session and executes the code passed as -c argu-

ment immediately. --rm option states that the client automatically terminates the session

after execution finishes.

backend.ai run --rm -c 'print("hello world")' python:3.6-ubuntu18.04

Note: By default, you need to specify language with full version tag like python:3.

6-ubuntu18.04. Depending on the Backend.AI admin’s language alias settings, this can

be shortened just as python. If you want to know defined language aliases, contact the

admin of Backend.AI server.

The following command spawns a Python session and executes the code passed as ./

myscript.py file, using the shell command specified in the --exec option.

backend.ai run --rm --exec 'python myscript.py arg1 arg2' \

python:3.6-ubuntu18.04 ./myscript.py

3.2. Compute Sessions 21

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Please note that your run command may hang up for a very long time due to queueing

when the cluster resource is not sufficiently available.

To avoid indefinite waiting, you may add --enqueue-only to return immediately after post-

ing the session creation request.

Note: When using --enqueue-only, the codes are NOT executed and relevant options are

ignored. This makes the run command to the same of the start command.

Or, you may use --max-wait option to limit the maximum waiting time. If the session starts

within the given --max-wait seconds, it works normally, but if not, it returns without code

execution like when used --enqueue-only.

To watch what is happening behind the scene until the session starts, try backend.ai

events <sessionID> to receive the lifecycle events such as its scheduling and prepara-

tion steps.

3.2.3 Running sessions with accelerators

Use one or more -r options to specify resource requirements when using backend.ai run

and backend.ai start commands.

For instance, the following command spawns a Python TensorFlow session using a half of

virtual GPU device, 4 CPU cores, and 8 GiB of the main memory to execute ./mygpucode.py

file inside it.

backend.ai run --rm \

-r cpu=4 -r mem=8g -r cuda.shares=2 \

python-tensorflow:1.12-py36 ./mygpucode.py

3.2.4 Terminating or cancelling sessions

Without --rm option, your session remains alive for a configured amount of idle timeout

(default is 30 minutes). You can see such sessions using the backend.ai ps command. Use

the following command to manually terminate them via their session IDs. You may specifcy

multiple session IDs to terminate them at once.

backend.ai rm <sessionID> [<sessionID>...]

If you terminate PENDING sessions which are not scheduled yet, they are cancelled.

22 Chapter 3. Command-line Interface

Backend.AI Client SDK for Python Documentation, Release 20.03.7

3.3 Container Applications

Note: Please consult the detailed usage in the help of each command (use -h or --help

argument to display the manual).

3.3.1 Starting a session and connecting to its Jupyter Notebook

The following command first spawns a Python session named “mysession” without running

any code immediately, and then executes a local proxy which connects to the “jupyter”

service running inside the session via the local TCP port 9900. The start command shows

application services provided by the created compute session so that you can choose one

in the subsequent app command. In the start command, you can specify detailed resource

options using -r and storage mounts using -m parameter.

backend.ai start -t mysession python

backend.ai app -b 9900 mysession jupyter

Once executed, the app command waits for the user to open the displayed address using

appropriate application. For the jupyter service, use your favorite web browser just like

the way you use Jupyter Notebooks. To stop the app command, press Ctrl+C or send the

SIGINT signal.

3.3.2 Accessing sessions via a web terminal

All Backend.AI sessions expose an intrinsic application named "ttyd". It is an web appli-

cation that embeds xterm.js-based full-screen terminal that runs on web browsers.

backend.ai start -t mysession ...

backend.ai app -b 9900 mysession ttyd

Then open http://localhost:9900 to access the shell in a fully functional web terminal

using browsers. The default shell is /bin/bash for Ubuntu/CentOS-based images and /

bin/ash for Alpine-based images with a fallback to /bin/sh.

Note: This shell access does NOT grant your root access. All compute session processes

are executed as the user privilege.

3.3. Container Applications 23

Backend.AI Client SDK for Python Documentation, Release 20.03.7

3.3.3 Accessing sessions via native SSH/SFTP

Backend.AI offers direct access to compute sessions (containers) via SSH and SFTP, by

auto-generating host identity and user keypairs for all sessions. All Baceknd.AI sessions

expose an intrinsic application named "sshd" like "ttyd".

To connect your sessions with SSH, first prepare your session and download an auto-

generated SSH keypair named id_container. Then start the service port proxy (“app”

command) to open a local TCP port that proxies the SSH/SFTP traffic to the compute ses-

sions:

$ backend.ai start -t mysess ...

$ backend.ai download mysess id_container

$ mv id_container ~/.ssh

$ backend.ai app mysess sshd -b 9922

In another terminal on the same PC, run your ssh client like:

$ ssh -o StrictHostKeyChecking=no \

> -o UserKnownHostsFile=/dev/null \

> -i ~/.ssh/id_container \

> work@localhost -p 9922

Warning: Permanently added '[127.0.0.1]:9922' (RSA) to the list of known hosts.

f310e8dbce83:~$

This SSH port is also compatible with SFTP to browse the container’s filesystem and to

upload/download large-sized files.

You could add the following to your ~/.ssh/config to avoid type extra options every time.

Host localhost

User work

IdentityFile ~/.ssh/id_container

StrictHostKeyChecking no

UserKnownHostsFile /dev/null

$ ssh localhost -p 9922

Warning: Since the SSH keypair is auto-generated every time when your launch a

new compute session, you need to download and keep it separately for each session.

To use your own SSH private key across all your sessions without downloading the auto-

generated one every time, create a vfolder named .ssh and put the authorized_keys file

that includes the public key. The keypair and .ssh directory permissions will be automati-

cally updated by Backend.AI when the session launches.

24 Chapter 3. Command-line Interface

Backend.AI Client SDK for Python Documentation, Release 20.03.7

$ ssh-keygen -t rsa -b 2048 -f id_container

$ cat id_container.pub > authorized_keys

$ backend.ai vfolder create .ssh

$ backend.ai vfolder upload .ssh authorized_keys

3.4 Storage Management

Note: Please consult the detailed usage in the help of each command (use -h or --help

argument to display the manual).

Backend.AI abstracts shared network storages into per-user slices called “virtual folders”

(aka “vfolders”), which can be shared between users and user group members.

3.4.1 Creating vfolders and managing them

The command-line interface provides a set of subcommands under backend.ai vfolder to

manage vfolders and files inside them.

To list accessible vfolders including your own ones and those shared by other users:

$ backend.ai vfolder list

To create a virtual folder named “mydata1”:

$ backend.ai vfolder create mydata1 mynas

The second argument mynas corresponds to the name of a storage host. To list up storage

hosts that you are allowed to use:

$ backend.ai vfolder list-hosts

To delete the vfolder completey:

$ backend.ai vfolder delete mydata1

3.4. Storage Management 25

Backend.AI Client SDK for Python Documentation, Release 20.03.7

3.4.2 File transfers and management

To upload a file from the current working directory into the vfolder:

$ backend.ai vfolder upload mydata1 ./bigdata.csv

To download a file from the vfolder into the current working directory:

$ backend.ai vfolder download mydata1 ./bigresult.txt

To list files in the vfolder’s specific path:

$ backend.ai vfolder ls mydata1 .

To delete files in the vfolder:

$ backend.ai vfolder rm mydata1 ./bigdata.csv

Warning: All file uploads and downloads overwrite existing files and all file operations

are irreversible.

3.4.3 Running sessions with storages

The following command spawns a Python session where the virtual folder “mydata1”

is mounted. The execution options are omitted in this example. Then, it downloads ./

bigresult.txt file (generated by your code) from the “mydata1” virtual folder.

$ backend.ai vfolder upload mydata1 ./bigdata.csv

$ backend.ai run --rm -m mydata1 python:3.6-ubuntu18.04 ...

$ backend.ai vfolder download mydata1 ./bigresult.txt

In your code, you may access the virtual folder via /home/work/mydata1 (where the default

current working directory is /home/work) just like a normal directory.

By reusing the same vfolder in subsequent sessions, you do not have to donwload the result

and upload it as the input for next sessions, just keeping them in the storage.

26 Chapter 3. Command-line Interface

Backend.AI Client SDK for Python Documentation, Release 20.03.7

3.4.4 Creating default files for kernels

Backend.AI has a feature called ‘dotfile’, created to all the kernels user spawns. As you

can guess, dotfile’s path should start with .. The following command creates dotfile named

.aws/config with permission 755. This file will be created under /home/work every time

user spawns Backend.AI kernel.

$ backend.ai dotfile create .aws/config < ~/.aws/config

3.5 Advanced Code Execution

Note: Please consult the detailed usage in the help of each command (use -h or --help

argument to display the manual).

3.5.1 Running concurrent experiment sessions

In addition to single-shot code execution as described in Running simple sessions, the run

command offers concurrent execution of multiple sessions with different parameters inter-

polated in the execution command specified in --exec option and environment variables

specified as -e / --env options.

To define variables interpolated in the --exec option, use --exec-range. To define vari-

ables interpolated in the --env options, use --env-range.

Here is an example with environment variable ranges that expands into 4 concurrent ses-

sions.

backend.ai run -c 'import os; print("Hello world, {}".format(os.environ["CASENO"]))

→˓' \

-r cpu=1 -r mem=256m \

-e 'CASENO=$X' \

--env-range=X=case:1,2,3,4 \

lablup/python:3.6-ubuntu18.04

Both range options accept a special form of argument: “range expressions”. The front

part of range option value consists of the variable name used for interpolation and an

equivalence sign (=). The rest of range expressions have the following three types:

3.5. Advanced Code Execution 27

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Expression Interpretation

case:CASE1,

CASE2,...,CASEN

A list of discrete values. The values may be either string or num-

bers.

linspace:START,

STOP,POINTS

An inclusive numerical range with discrete points, in the same way

of numpy.linspace(). For example, linspace:1,2,3 generates a

list of three values: 1, 1.5, and 2.

range:START,

STOP,STEP

A numerical range with the same semantics of Python’s range().

For example, range:1,6,2 generates a list of values: 1, 3, and 5.

If you specify multiple occurrences of range options in the run command, the client spawns

sessions for all possible combinations of all values specified by each range.

Note: When your resource limit and cluster’s resource capacity cannot run all spawned

sessions at the same time, some of sessions may be queued and the command may take a

long time to finish.

Warning: Until all cases finish, the client must keep its network connections to the

server alive because this feature is implemented in the client-side. Server-side batch

job scheduling is under development!

3.6 Session Templates

3.6.1 Creating and starting session template

Users may define commonly used set of session creation parameters as reusable templates.

A session template includes common session parameters such as resource slots, vfolder

mounts, the kernel iamge to use, and etc. It also support an extra feature that automatically

clones a Git repository upon startup as a bootstrap command.

The following sample shows how a session template looks like:

api_version: v1

kind: taskTemplate

metadata:

name: template1234

tag: example-tag

spec:

kernel:

(continues on next page)

28 Chapter 3. Command-line Interface

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

environ:

MYCONFIG: XXX

git:

branch: '19.09'

commit: 10daee9e328876d75e6d0fa4998d4456711730db

repository: https://github.com/lablup/backend.ai-agent

destinationDir: /home/work/baiagent

image: python:3.6-ubuntu18.04

resources:

cpu: '2'

mem: 4g

mounts:

hostpath-test: /home/work/hostDesktop

test-vfolder:

sessionType: interactive

The backend.ai sesstpl command set provides the basic CRUD operations of user-

specific session templates.

The create command accepts the YAML content either piped from the standard input or

read from a file using -f flag:

$ backend.ai sesstpl create < session-template.yaml

-- or --

$ backend.ai sesstpl create -f session-template.yaml

Once the session template is uploaded, you may use it to start a new session:

$ backend.ai start-template <templateId>

with substituting <templateId> to your template ID.

Other CRUD command examples are as follows:

$ backend.ai sesstpl update <templateId> < session-template.yaml

$ backend.ai sesstpl list

$ backend.ai sesstpl get <templateId>

$ backend.ai sesstpl delete <templateId>

3.6. Session Templates 29

Backend.AI Client SDK for Python Documentation, Release 20.03.7

3.6.2 Full syntax for task template

api_version or apiVersion: str, required

kind: Enum['taskTemplate', 'task_template'], required

metadata: required

name: str, required

tag: str (optional)

spec:

type or sessionType: Enum['interactive', 'batch'] (optional), default=interactive

kernel:

image: str, required

environ: map[str, str] (optional)

run: (optional)

bootstrap: str (optional)

stratup or startup_command or startupCommand: str (optional)

git: (optional)

repository: str, required

commit: str (optional)

branch: str (optional)

credential: (optional)

username: str

password: str

destination_dir or destinationDir: str (optional)

mounts: map[str, str] (optional)

resources: map[str, str] (optional)

30 Chapter 3. Command-line Interface

CHAPTER

FOUR

DEVELOPER REFERENCE

4.1 Developer Guides

4.1.1 Client Session

This module is the first place to begin with your Python programs that use Backend.AI API

functions.

The high-level API functions cannot be used alone – you must initiate a client session first

because each session provides proxy attributes that represent API functions and run on

the session itself.

To achieve this, during initialization session objects internally construct new types by com-

bining the BaseFunction class with the attributes in each API function classes, and makes

the new types bound to itself. Creating new types every time when creating a new session

instance may look weird, but it is the most convenient way to provide class-methods in the

API function classes to work with specific session instances.

When designing your application, please note that session objects are intended to live long

following the process’ lifecycle, instead of to be created and disposed whenever making

API requests.

class ai.backend.client.session.BaseSession(*, config=None,

proxy_mode=False)
The base abstract class for sessions.

proxy_mode

If set True, it skips API version negotiation when opening the session.

Return type bool

abstractmethod open()

Initializes the session and perform version negotiation.

Return type Union[None, Awaitable[None]]

abstractmethod close()

Terminates the session and releases underlying resources.

31

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Awaitable

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Return type Union[None, Awaitable[None]]

closed

Checks if the session is closed.

Return type bool

config

The configuration used by this session object.

Return type APIConfig

class ai.backend.client.session.Session(*, config=None, proxy_mode=False)

A context manager for API client sessions that makes API requests synchronously.

You may call simple request-response APIs like a plain Python function, but cannot

use streaming APIs based on WebSocket and Server-Sent Events.

closed

Checks if the session is closed.

Return type bool

config

The configuration used by this session object.

Return type APIConfig

proxy_mode

If set True, it skips API version negotiation when opening the session.

Return type bool

open()

Initializes the session and perform version negotiation.

Return type None

close()

Terminates the session. It schedules the close() coroutine of the underlying

aiohttp session and then enqueues a sentinel object to indicate termination. Then

it waits until the worker thread to self-terminate by joining.

Return type None

worker_thread

The thread that internally executes the asynchronous implementations of the

given API functions.

class ai.backend.client.session.AsyncSession(*, config=None,

proxy_mode=False)
A context manager for API client sessions that makes API requests asynchronously.

You may call all APIs as coroutines. WebSocket-based APIs and SSE-based APIs re-

turns special response types.

32 Chapter 4. Developer Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Backend.AI Client SDK for Python Documentation, Release 20.03.7

closed

Checks if the session is closed.

Return type bool

config

The configuration used by this session object.

Return type APIConfig

proxy_mode

If set True, it skips API version negotiation when opening the session.

Return type bool

open()

Initializes the session and perform version negotiation.

Return type Awaitable[None]

close()

Terminates the session and releases underlying resources.

Return type Awaitable[None]

4.1.2 Examples

Synchronous-mode execution

Query mode

This is the minimal code to execute a code snippet with this client SDK.

import sys

from ai.backend.client import Session

with Session() as session:

kern = session.ComputeSession.get_or_create('python:3.6-ubuntu18.04')

code = 'print("hello world")'

mode = 'query'

run_id = None

while True:

result = kern.execute(run_id, code, mode=mode)

run_id = result['runId'] # keeps track of this particular run loop

for rec in result.get('console', []):

if rec[0] == 'stdout':

print(rec[1], end='', file=sys.stdout)

elif rec[0] == 'stderr':

print(rec[1], end='', file=sys.stderr)

(continues on next page)

4.1. Developer Guides 33

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/typing.html#typing.Awaitable

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

else:

handle_media(rec)

sys.stdout.flush()

if result['status'] == 'finished':

break

else:

mode = 'continued'

code = ''

kern.destroy()

You need to take care of client_token because it determines whether to reuse kernel

sessions or not. Backend.AI cloud has a timeout so that it terminates long-idle kernel ses-

sions, but within the timeout, any kernel creation requests with the same client_token let

Backend.AI cloud to reuse the kernel.

Batch mode

You first need to upload the files after creating the session and construct a opts struct.

import sys

from ai.backend.client import Session

with Session() as session:

kern = session.ComputeSession.get_or_create('python:3.6-ubuntu18.04')

kern.upload(['mycode.py', 'setup.py'])

code = ''

mode = 'batch'

run_id = None

opts = {

'build': '*', # calls "python setup.py install"

'exec': 'python mycode.py arg1 arg2',

}

while True:

result = kern.execute(run_id, code, mode=mode, opts=opts)

opts.clear()

run_id = result['runId']

for rec in result.get('console', []):

if rec[0] == 'stdout':

print(rec[1], end='', file=sys.stdout)

elif rec[0] == 'stderr':

print(rec[1], end='', file=sys.stderr)

else:

handle_media(rec)

sys.stdout.flush()

if result['status'] == 'finished':
(continues on next page)

34 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

break

else:

mode = 'continued'

code = ''

kern.destroy()

Handling user inputs

Inside the while-loop for kern.execute() above, change the if-block for result['status']

as follows:

...

if result['status'] == 'finished':

break

elif result['status'] == 'waiting-input':

mode = 'input'

if result['options'].get('is_password', False):

code = getpass.getpass()

else:

code = input()

else:

mode = 'continued'

code = ''

...

A common gotcha is to miss setting mode = 'input'. Be careful!

Handling multi-media outputs

The handle_media() function used above examples would look like:

def handle_media(record):

media_type = record[0] # MIME-Type string

media_data = record[1] # content

...

The exact method to process media_data depends on the media_type. Currently the fol-

lowing behaviors are well-defined:

• For (binary-format) images, the content is a dataURI-encoded string.

• For SVG (scalable vector graphics) images, the content is an XML string.

• For application/x-sorna-drawing, the content is a JSON string that represents a

set of vector drawing commands to be replayed the client-side (e.g., Javascript on

4.1. Developer Guides 35

Backend.AI Client SDK for Python Documentation, Release 20.03.7

browsers)

Asynchronous-mode Execution

The async version has all sync-version interfaces as coroutines but comes with additional

features such as stream_execute() which streams the execution results via websockets

and stream_pty() for interactive terminal streaming.

import asyncio

import json

import sys

import aiohttp

from ai.backend.client import AsyncSession

async def main():

async with AsyncSession() as session:

kern = await session.ComputeSession.get_or_create('python:3.6-ubuntu18.04',

client_token='mysession')

code = 'print("hello world")'

mode = 'query'

async with kern.stream_execute(code, mode=mode) as stream:

no need for explicit run_id since WebSocket connection represents it!

async for result in stream:

if result.type != aiohttp.WSMsgType.TEXT:

continue

result = json.loads(result.data)

for rec in result.get('console', []):

if rec[0] == 'stdout':

print(rec[1], end='', file=sys.stdout)

elif rec[0] == 'stderr':

print(rec[1], end='', file=sys.stderr)

else:

handle_media(rec)

sys.stdout.flush()

if result['status'] == 'finished':

break

elif result['status'] == 'waiting-input':

mode = 'input'

if result['options'].get('is_password', False):

code = getpass.getpass()

else:

code = input()

await stream.send_text(code)

else:

mode = 'continued'

code = ''

(continues on next page)

36 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

(continued from previous page)

await kern.destroy()

loop = asyncio.get_event_loop()

try:

loop.run_until_complete(main())

finally:

loop.stop()

New in version 1.5.

4.1.3 Testing

Unit Tests

Unit tests perform function-by-function tests to ensure their individual functionality. This

test suite runs without depending on the server-side and thus it is executed in Travis CI for

every push.

How to run

$ python -m pytest -m 'not integration' tests

Integration Tests

Integration tests combine multiple invocations of high-level interfaces to make underlying

API requests to a running gateway server to test the full functionality of the client as well

as the manager.

They are marked as “integration” using the @pytest.mark.integration decorator to each

test case.

Warning: The integration tests actually make changes to the target gateway server

and agents. If some tests fail, those changes may remain in an inconsistent state and

requires a manual recovery such as resetting the database and populating fixtures

again, though the test suite tries to clean up them properly.

So, DO NOT RUN it against your production server.

4.1. Developer Guides 37

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Prerequisite

Please refer the README of the manager and agent repositories to set up them. To avoid

an indefinite waiting time for pulling Docker images:

• (manager) python -m ai.backend.manager.cli etcd rescan-images

• (agent) docker pull

– lablup/python:3.6-ubuntu18.04

– lablup/lua:5.3-alpine3.8

The manager must also have at least the following active suerp-admin account in the

default domain and the default group.

• Example super-admin account:

– User ID: admin@lablup.com

– Password wJalrXUt

– Access key: AKIAIOSFODNN7EXAMPLE

– Secret key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

One or more testing-XXXX domain, one or more testing-XXXX groups, and one ore more

dummy users are created and used during the tests and destroyed after running tests. XXXX

will be filled with random identifiers.

Tip: The halfstack configuration and the example-keypairs.json fixture is compatible

with this integration test suite.

How to run

Execute the gateway and at least one agent in their respective virtualenvs and hosts:

$ python -m ai.backend.client.gateway.server

$ python -m ai.backend.client.agent.server

$ python -m ai.backend.client.agent.watcher

Then run the tests:

$ export BACKEND_ENDPOINT=...

$ python -m pytest -m 'integration' tests

38 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

4.2 High-level Function Reference

4.2.1 Admin Functions

class ai.backend.client.func.admin.Admin

Provides the function interface for making admin GrapQL queries.

Note: Depending on the privilege of your API access key, you may or may not have

access to querying/mutating server-side resources of other users.

classmethod await query()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

4.2.2 Agent Functions

class ai.backend.client.func.agent.Agent

Provides a shortcut of Admin.query() that fetches various agent information.

Note: All methods in this function class require your API access key to have the

admin privilege.

classmethod async for ... in paginated_list()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

4.2. High-level Function Reference 39

Backend.AI Client SDK for Python Documentation, Release 20.03.7

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await detail()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

4.2.3 Auth Functions

class ai.backend.client.func.auth.Auth

Provides the function interface for login session management and authorization.

classmethod await login()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

40 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await logout()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await update_password()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

4.2.4 Configuration

ai.backend.client.config.get_env(key, default=<object object>, *,

clean=<function <lambda>>)
Retrieves a configuration value from the environment variables. The given key is

uppercased and prefixed by "BACKEND_" and then "SORNA_" if the former does not

exist.

Parameters

• key (str) – The key name.

4.2. High-level Function Reference 41

https://docs.python.org/3/library/stdtypes.html#str

Backend.AI Client SDK for Python Documentation, Release 20.03.7

• default (Any) – The default value returned when there is no corre-

sponding environment variable.

• clean (Callable[[str], Any]) – A single-argument function that is

applied to the result of lookup (in both successes and the default

value for failures). The default is returning the value as-is.

Returns The value processed by the clean function.

ai.backend.client.config.get_config()

Returns the configuration for the current process. If there is no explicitly set

APIConfig instance, it will generate a new one from the current environment vari-

ables and defaults.

ai.backend.client.config.set_config(conf)

Sets the configuration used throughout the current process.

class ai.backend.client.config.APIConfig(*, endpoint=None, end-

point_type=None, do-

main=None, group=None, ver-

sion=None, user_agent=None,

access_key=None, se-

cret_key=None, hash_type=None,

vfolder_mounts=None,

skip_sslcert_validation=None,

connection_timeout=None,

read_timeout=None, announce-

ment_handler=None)
Represents a set of API client configurations. The access key and secret key are

mandatory – they must be set in either environment variables or as the explicit argu-

ments.

Parameters

• endpoint (Union[str, URL, None]) – The URL prefix to make API re-

quests via HTTP/HTTPS. If this is given as str and contains multiple

URLs separated by comma, the underlying HTTP request-response

facility will perform client-side load balancing and automatic fail-

over using them, assuming that all those URLs indicates a single,

same cluster. The users of the API and CLI will get network connec-

tion errors only when all of the given endpoints fail – intermittent

failures of a subset of endpoints will be hidden with a little increased

latency.

• endpoint_type (Optional[str]) – Either "api" or "session". If the

endpoint type is "api" (the default if unspecified), it uses the ac-

cess key and secret key in the configuration to access the manager

42 Chapter 4. Developer Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://yarl.readthedocs.io/en/stable/api.html#yarl.URL
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Backend.AI Client SDK for Python Documentation, Release 20.03.7

API server directly. If the endpoint type is "session", it assumes

the endpoint is a Backend.AI console server which provides cookie-

based authentication with username and password. In the latter,

users need to use backend.ai login and backend.ai logout to

manage their sign-in status, or the API equivalent in login() and

logout() methods.

• version (Optional[str]) – The API protocol version.

• user_agent (Optional[str]) – A custom user-agent string which is

sent to the API server as a User-Agent HTTP header.

• access_key (Optional[str]) – The API access key. If deliberately set

to an empty string, the API requests will be made without signatures

(anonymously).

• secret_key (Optional[str]) – The API secret key.

• hash_type (Optional[str]) – The hash type to generate per-request

authentication signatures.

• vfolder_mounts (Optional[Iterable[str]]) – A list of vfolder

names (that must belong to the given access key) to be automati-

cally mounted upon any Kernel.get_or_create() calls.

DEFAULTS: Mapping[str, Any] = {'connection_timeout': 10.0, 'domain': 'default', 'endpoint': 'https://api.backend.ai', 'endpoint_type': 'api', 'group': 'default', 'hash_type': 'sha256', 'read_timeout': None, 'version': 'v5.20191215'}

The default values for config parameterse settable via environment variables

xcept the access and secret keys.

endpoint

The currently active endpoint URL. This may change if there are multiple con-

figured endpoints and the current one is not accessible.

Return type URL

endpoints

All configured endpoint URLs.

Return type Sequence[URL]

endpoint_type

The configured endpoint type.

Return type str

domain

The configured domain.

Return type str

group

The configured group.

4.2. High-level Function Reference 43

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://yarl.readthedocs.io/en/stable/api.html#yarl.URL
https://docs.python.org/3/library/typing.html#typing.Sequence
https://yarl.readthedocs.io/en/stable/api.html#yarl.URL
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Return type str

user_agent

The configured user agent string.

Return type str

access_key

The configured API access key.

Return type str

secret_key

The configured API secret key.

Return type str

version

The configured API protocol version.

Return type str

hash_type

The configured hash algorithm for API authentication signatures.

Return type str

vfolder_mounts

The configured auto-mounted vfolder list.

Return type Sequence[str]

skip_sslcert_validation

Whether to skip SSL certificate validation for the API gateway.

Return type bool

connection_timeout

The maximum allowed duration for making TCP connections to the server.

Return type float

read_timeout

The maximum allowed waiting time for the first byte of the response from the

server.

Return type float

announcement_handler

The announcement handler to display server-set announcements.

Return type Optional[Callable[[str], None]]

44 Chapter 4. Developer Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str

Backend.AI Client SDK for Python Documentation, Release 20.03.7

4.2.5 KeyPair Functions

class ai.backend.client.func.keypair.KeyPair(access_key)

Provides interactions with keypairs.

classmethod await create()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await update()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await delete()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

4.2. High-level Function Reference 45

Backend.AI Client SDK for Python Documentation, Release 20.03.7

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod async for ... in paginated_list()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

await info(fields=None)

Returns the keypair’s information such as resource limits.

Parameters fields (Optional[Iterable[str]]) – Additional per-agent

query fields to fetch.

New in version 18.12.

46 Chapter 4. Developer Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Return type dict

classmethod await activate()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await deactivate()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

4.2.6 Manager Functions

class ai.backend.client.func.manager.Manager

Provides controlling of the gateway/manager servers.

New in version 18.12.

classmethod await status()

classmethod(function) -> method

Convert a function to be a class method.

4.2. High-level Function Reference 47

https://docs.python.org/3/library/stdtypes.html#dict

Backend.AI Client SDK for Python Documentation, Release 20.03.7

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await freeze()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await unfreeze()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

48 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

classmethod await get_announcement()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await update_announcement()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await scheduler_op()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

4.2. High-level Function Reference 49

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

4.2.7 Scaling Group Functions

class ai.backend.client.func.scaling_group.ScalingGroup(name)

Provides getting scaling-group information required for the current user.

The scaling-group is an opaque server-side configuration which splits the whole clus-

ter into several partitions, so that server administrators can apply different auto-

scaling policies and operation standards to each partition of agent sets.

classmethod await list_available()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await detail()

classmethod(function) -> method

50 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await create()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await update()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

4.2. High-level Function Reference 51

Backend.AI Client SDK for Python Documentation, Release 20.03.7

classmethod await delete()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await associate_domain()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await dissociate_domain()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

52 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await dissociate_all_domain()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await associate_group()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await dissociate_group()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

4.2. High-level Function Reference 53

Backend.AI Client SDK for Python Documentation, Release 20.03.7

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await dissociate_all_group()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

4.2.8 ComputeSession Functions

class ai.backend.client.func.session.ComputeSession(name,

owner_access_key=None)
Provides various interactions with compute sessions in Backend.AI.

The term ‘kernel’ is now deprecated and we prefer ‘compute sessions’. However, for

historical reasons and to avoid confusion with client sessions, we keep the backward

compatibility with the naming of this API function class.

For multi-container sessions, all methods take effects to the master container only, ex-

cept destroy() and restart() methods. So it is the user’s responsibility to distribute

uploaded files to multiple containers using explicit copies or virtual folders which are

commonly mounted to all containers belonging to the same compute session.

classmethod async for ... in paginated_list()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

54 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await hello()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod async for ... in get_task_logs()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await get_or_create()

classmethod(function) -> method

Convert a function to be a class method.

4.2. High-level Function Reference 55

Backend.AI Client SDK for Python Documentation, Release 20.03.7

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await create_from_template()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

await destroy(*, forced=False)

Destroys the compute session. Since the server literally kills the container(s), all

ongoing executions are forcibly interrupted.

await restart()

Restarts the compute session. The server force-destroys the current running con-

tainer(s), but keeps their temporary scratch directories intact.

await interrupt()

Tries to interrupt the current ongoing code execution. This may fail without any

explicit errors depending on the code being executed.

await complete(code, opts=None)

Gets the auto-completion candidates from the given code string, as if a user has

pressed the tab key just after the code in IDEs.

Depending on the language of the compute session, this feature may not be sup-

ported. Unsupported sessions returns an empty list.

56 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Parameters

• code (str) – An (incomplete) code text.

• opts (Optional[dict]) – Additional information about the current

cursor position, such as row, col, line and the remainder text.

Return type Iterable[str]

Returns An ordered list of strings.

await get_info()

Retrieves a brief information about the compute session.

await get_logs()

Retrieves the console log of the compute session container.

await execute(run_id=None, code=None, mode='query', opts=None)

Executes a code snippet directly in the compute session or sends a set of

build/clean/execute commands to the compute session.

For more details about using this API, please refer the official API documenta-

tion.

Parameters

• run_id (Optional[str]) – A unique identifier for a particular run

loop. In the first call, it may be None so that the server auto-assigns

one. Subsequent calls must use the returned runId value to re-

quest continuation or to send user inputs.

• code (Optional[str]) – A code snippet as string. In the contin-

uation requests, it must be an empty string. When sending user

inputs, this is where the user input string is stored.

• mode (str) – A constant string which is one of "query", "batch",

"continue", and "user-input".

• opts (Optional[dict]) – A dict for specifying additional options.

Mainly used in the batch mode to specify build/clean/execution

commands. See the API object reference for details.

Returns An execution result object

await upload(files, basedir=None, show_progress=False)

Uploads the given list of files to the compute session. You may refer them in the

batch-mode execution or from the code executed in the server afterwards.

Parameters

• files (Sequence[Union[str, Path]]) – The list of file paths in the

client-side. If the paths include directories, the location of them in

4.2. High-level Function Reference 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.backend.ai/en/latest/user-api/intro.html
https://docs.backend.ai/en/latest/user-api/intro.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.backend.ai/en/latest/common-api/objects.html#batch-execution-query-object
https://docs.backend.ai/en/latest/common-api/objects.html#execution-result-object
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Backend.AI Client SDK for Python Documentation, Release 20.03.7

the compute session is calculated from the relative path to basedir

and all intermediate parent directories are automatically created

if not exists.

For example, if a file path is /home/user/test/data.txt (or test/

data.txt) where basedir is /home/user (or the current working

directory is /home/user), the uploaded file is located at /home/

work/test/data.txt in the compute session container.

• basedir (Union[str, Path, None]) – The directory prefix where the

files reside. The default value is the current working directory.

• show_progress (bool) – Displays a progress bar during uploads.

await download(files, dest='.', show_progress=False)

Downloads the given list of files from the compute session.

Parameters

• files (Sequence[Union[str, Path]]) – The list of file paths in the

compute session. If they are relative paths, the path is calculated

from /home/work in the compute session container.

• dest (Union[str, Path]) – The destination directory in the client-

side.

• show_progress (bool) – Displays a progress bar during downloads.

await list_files(path='.')

Gets the list of files in the given path inside the compute session container.

Parameters path (Union[str, Path]) – The directory path in the com-

pute session.

listen_events()

Opens the stream of the kernel lifecycle events. Only the master kernel of each

session is monitored.

Return type SSEContextManager

Returns a StreamEvents object.

stream_events()

Opens the stream of the kernel lifecycle events. Only the master kernel of each

session is monitored.

Return type SSEContextManager

Returns a StreamEvents object.

stream_pty()

Opens a pseudo-terminal of the kernel (if supported) streamed via websockets.

58 Chapter 4. Developer Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Return type WebSocketContextManager

Returns a StreamPty object.

stream_execute(code='', *, mode='query', opts=None)

Executes a code snippet in the streaming mode. Since the returned websocket

represents a run loop, there is no need to specify run_id explicitly.

Return type WebSocketContextManager

class ai.backend.client.func.session.StreamPty(session, underly-

ing_response, **kwargs)
A derivative class of WebSocketResponse which provides additional functions to con-

trol the terminal.

4.2.9 Session Template Functions

class ai.backend.client.func.session_template.SessionTemplate(template_id,

owner_access_key=None)

classmethod await create()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list_templates()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

4.2. High-level Function Reference 59

Backend.AI Client SDK for Python Documentation, Release 20.03.7

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

await get(body_format='yaml')

Return type str

await put(template)

Return type Any

await delete()

Return type Any

4.2.10 Virtual Folder Functions

class ai.backend.client.func.vfolder.VFolder(name)

classmethod await create()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await delete_by_id()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

60 Chapter 4. Developer Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Backend.AI Client SDK for Python Documentation, Release 20.03.7

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod async for ... in paginated_list()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list_hosts()

classmethod(function) -> method

Convert a function to be a class method.

4.2. High-level Function Reference 61

Backend.AI Client SDK for Python Documentation, Release 20.03.7

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list_all_hosts()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list_allowed_types()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

await info()

62 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

await delete()

await rename(new_name)

await upload(files, basedir=None, show_progress=False)

await mkdir(path)

await request_download(filename)

await rename_file(target_path, new_name)

await delete_files(files, recursive=False)

await download(files, show_progress=False)

await list_files(path='.')

await invite(perm, emails)

classmethod await invitations()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await accept_invitation()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

4.2. High-level Function Reference 63

Backend.AI Client SDK for Python Documentation, Release 20.03.7

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await delete_invitation()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await get_fstab_contents()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await list_mounts()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

64 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await mount_host()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

classmethod await umount_host()

classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument, just like an instance

method receives the instance. To declare a class method, use this idiom:

class C: @classmethod def f(cls, arg1, arg2, . . .):

. . .

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The

instance is ignored except for its class. If a class method is called for a derived

class, the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those,

see the staticmethod builtin.

await leave()

4.2. High-level Function Reference 65

Backend.AI Client SDK for Python Documentation, Release 20.03.7

4.3 Low-level SDK Reference

4.3.1 Base Function

This module defines a few utilities that ease complexities to support both synchronous and

asynchronous API functions, using some tricks with Python metaclasses.

Unless your are contributing to the client SDK, probably you won’t have to use this module

directly.

4.3.2 Request API

This module provides low-level API request/response interfaces based on aiohttp.

Depending on the session object where the request is made from, Request and Response

differentiate their behavior: works as plain Python functions or returns awaitables.

class ai.backend.client.request.Request(session, method='GET',

path=None, content=None, *, con-

tent_type=None, params=None,

reporthook=None, over-

ride_api_version=None)
The API request object.

with async with fetch(**kwargs) as Response

Sends the request to the server and reads the response.

You may use this method either with plain synchronous Session or AsyncSession.

Both the followings patterns are valid:

from ai.backend.client.request import Request

from ai.backend.client.session import Session

with Session() as sess:

rqst = Request(sess, 'GET', ...)

with rqst.fetch() as resp:

print(resp.text())

from ai.backend.client.request import Request

from ai.backend.client.session import AsyncSession

async with AsyncSession() as sess:

rqst = Request(sess, 'GET', ...)

async with rqst.fetch() as resp:

print(await resp.text())

Return type FetchContextManager

66 Chapter 4. Developer Reference

Backend.AI Client SDK for Python Documentation, Release 20.03.7

async with connect_websocket(**kwargs) as WebSocketResponse or its

derivatives
Creates a WebSocket connection.

Warning: This method only works with AsyncSession.

Return type WebSocketContextManager

content

Retrieves the content in the original form. Private codes should NOT use this as

it incurs duplicate encoding/decoding.

Return type Union[bytes, bytearray, str, StreamReader, IOBase,

None]

set_content(value, *, content_type=None)

Sets the content of the request.

Return type None

set_json(value)

A shortcut for set_content() with JSON objects.

Return type None

attach_files(files)

Attach a list of files represented as AttachedFile.

Return type None

connect_events(**kwargs)

Creates a Server-Sent Events connection.

Warning: This method only works with AsyncSession.

Return type SSEContextManager

class ai.backend.client.request.Response(session, underlying_response, *,

async_mode=False, **kwargs)

class ai.backend.client.request.WebSocketResponse(session, underly-

ing_response, **kwargs)
A high-level wrapper of aiohttp.ClientWebSocketResponse.

4.3. Low-level SDK Reference 67

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.IOBase
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientWebSocketResponse

Backend.AI Client SDK for Python Documentation, Release 20.03.7

class ai.backend.client.request.FetchContextManager(session,

rqst_ctx_builder, *,

response_cls=<class

'ai.backend.client.request.Response'>,

check_status=True)
The context manager returned by Request.fetch().

It provides both synchronous and asynchronous context manager interfaces.

class ai.backend.client.request.WebSocketContextManager(session,

ws_ctx_builder,

*, on_enter=None,

re-

sponse_cls=<class

'ai.backend.client.request.WebSocketResponse'>)
The context manager returned by Request.connect_websocket().

class ai.backend.client.request.AttachedFile(filename, stream, con-

tent_type)
A struct that represents an attached file to the API request.

Parameters

• filename (str) – The name of file to store. It may include paths and

the server will create parent directories if required.

• stream (Any) – A file-like object that allows stream-reading bytes.

• content_type (str) – The content type for the stream. For arbitrary

binary data, use “application/octet-stream”.

content_type

Alias for field number 2

count()

Return number of occurrences of value.

filename

Alias for field number 0

index()

Return first index of value.

Raises ValueError if the value is not present.

stream

Alias for field number 1

68 Chapter 4. Developer Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Backend.AI Client SDK for Python Documentation, Release 20.03.7

4.3.3 Exceptions

class ai.backend.client.exceptions.BackendError

Exception type to catch all ai.backend-related errors.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class ai.backend.client.exceptions.BackendAPIError(status, reason, data)

Exceptions returned by the API gateway.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class ai.backend.client.exceptions.BackendClientError

Exceptions from the client library, such as argument validation errors and connection

failures.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

4.3.4 Miscellaneous Utilities

ai.backend.client.utils.undefined

A placeholder to signify an undefined value as a singleton object of Undefined and

distinguish it from a null (None) value.

4.3. Low-level SDK Reference 69

Backend.AI Client SDK for Python Documentation, Release 20.03.7

70 Chapter 4. Developer Reference

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

71

Backend.AI Client SDK for Python Documentation, Release 20.03.7

72 Chapter 5. Indices and tables

PYTHON MODULE INDEX

a

ai.backend.client.base, 66

ai.backend.client.config, 41

ai.backend.client.exceptions, 69

ai.backend.client.func.admin, 39

ai.backend.client.func.agent, 39

ai.backend.client.func.auth, 40

ai.backend.client.func.keypair, 45

ai.backend.client.func.manager, 47

ai.backend.client.func.scaling_group,

50

ai.backend.client.func.session, 54

ai.backend.client.func.session_template,

59

ai.backend.client.func.vfolder, 60

ai.backend.client.request, 66

ai.backend.client.session, 31

ai.backend.client.utils, 69

73

Backend.AI Client SDK for Python Documentation, Release 20.03.7

74 Python Module Index

INDEX

A

accept_invitation()

(ai.backend.client.func.vfolder.VFolder

class method), 63

access_key() (ai.backend.client.config.APIConfig

property), 44

activate() (ai.backend.client.func.keypair.KeyPair

class method), 47

Admin (class in

ai.backend.client.func.admin),

39

Agent (class in

ai.backend.client.func.agent),

39

ai.backend.client.base (module), 66

ai.backend.client.config (module), 41

ai.backend.client.exceptions (module),

69

ai.backend.client.func.admin (module),

39

ai.backend.client.func.agent (module),

39

ai.backend.client.func.auth (module),

40

ai.backend.client.func.keypair (mod-

ule), 45

ai.backend.client.func.manager (mod-

ule), 47

ai.backend.client.func.scaling_group

(module), 50

ai.backend.client.func.session (mod-

ule), 54

ai.backend.client.func.session_template

(module), 59

ai.backend.client.func.vfolder (mod-

ule), 60

ai.backend.client.request (module), 66

ai.backend.client.session (module), 31

ai.backend.client.utils (module), 69

announcement_handler()

(ai.backend.client.config.APIConfig

property), 44

APIConfig (class in

ai.backend.client.config), 42

associate_domain()

(ai.backend.client.func.scaling_group.ScalingGroup

class method), 52

associate_group()

(ai.backend.client.func.scaling_group.ScalingGroup

class method), 53

AsyncSession (class in

ai.backend.client.session), 32

attach_files()

(ai.backend.client.request.Request

method), 67

AttachedFile (class in

ai.backend.client.request), 68

Auth (class in ai.backend.client.func.auth),

40

B

BackendAPIError (class in

ai.backend.client.exceptions),

69

BackendClientError (class in

ai.backend.client.exceptions),

69

BackendError (class in

75

Backend.AI Client SDK for Python Documentation, Release 20.03.7

ai.backend.client.exceptions),

69

BaseSession (class in

ai.backend.client.session), 31

C

close() (ai.backend.client.session.AsyncSession

method), 33

close() (ai.backend.client.session.BaseSession

method), 31

close() (ai.backend.client.session.Session

method), 32

closed() (ai.backend.client.session.AsyncSession

property), 32

closed() (ai.backend.client.session.BaseSession

property), 32

closed() (ai.backend.client.session.Session

property), 32

complete() (ai.backend.client.func.session.ComputeSession

method), 56

ComputeSession (class in

ai.backend.client.func.session),

54

config() (ai.backend.client.session.AsyncSession

property), 33

config() (ai.backend.client.session.BaseSession

property), 32

config() (ai.backend.client.session.Session

property), 32

connect_events()

(ai.backend.client.request.Request

method), 67

connect_websocket()

(ai.backend.client.request.Request

method), 67

connection_timeout()

(ai.backend.client.config.APIConfig

property), 44

content() (ai.backend.client.request.Request

property), 67

content_type (ai.backend.client.request.AttachedFile

attribute), 68

count() (ai.backend.client.request.AttachedFile

method), 68

create() (ai.backend.client.func.keypair.KeyPair

class method), 45

create() (ai.backend.client.func.scaling_group.ScalingGroup

class method), 51

create() (ai.backend.client.func.session_template.SessionTemplate

class method), 59

create() (ai.backend.client.func.vfolder.VFolder

class method), 60

create_from_template()

(ai.backend.client.func.session.ComputeSession

class method), 56

D

deactivate() (ai.backend.client.func.keypair.KeyPair

class method), 47

DEFAULTS (ai.backend.client.config.APIConfig

attribute), 43

delete() (ai.backend.client.func.keypair.KeyPair

class method), 45

delete() (ai.backend.client.func.scaling_group.ScalingGroup

class method), 51

delete() (ai.backend.client.func.session_template.SessionTemplate

method), 60

delete() (ai.backend.client.func.vfolder.VFolder

method), 62

delete_by_id()

(ai.backend.client.func.vfolder.VFolder

class method), 60

delete_files()

(ai.backend.client.func.vfolder.VFolder

method), 63

delete_invitation()

(ai.backend.client.func.vfolder.VFolder

class method), 64

destroy() (ai.backend.client.func.session.ComputeSession

method), 56

detail() (ai.backend.client.func.agent.Agent

class method), 40

detail() (ai.backend.client.func.scaling_group.ScalingGroup

class method), 50

dissociate_all_domain()

(ai.backend.client.func.scaling_group.ScalingGroup

76 Index

Backend.AI Client SDK for Python Documentation, Release 20.03.7

class method), 53

dissociate_all_group()

(ai.backend.client.func.scaling_group.ScalingGroup

class method), 54

dissociate_domain()

(ai.backend.client.func.scaling_group.ScalingGroup

class method), 52

dissociate_group()

(ai.backend.client.func.scaling_group.ScalingGroup

class method), 53

domain() (ai.backend.client.config.APIConfig

property), 43

download() (ai.backend.client.func.session.ComputeSession

method), 58

download() (ai.backend.client.func.vfolder.VFolder

method), 63

E

endpoint() (ai.backend.client.config.APIConfig

property), 43

endpoint_type()

(ai.backend.client.config.APIConfig

property), 43

endpoints() (ai.backend.client.config.APIConfig

property), 43

execute() (ai.backend.client.func.session.ComputeSession

method), 57

F

fetch() (ai.backend.client.request.Request

method), 66

FetchContextManager (class in

ai.backend.client.request), 67

filename (ai.backend.client.request.AttachedFile

attribute), 68

freeze() (ai.backend.client.func.manager.Manager

class method), 48

G

get() (ai.backend.client.func.session_template.SessionTemplate

method), 60

get_announcement()

(ai.backend.client.func.manager.Manager

class method), 48

get_config() (in module

ai.backend.client.config), 42

get_env() (in module

ai.backend.client.config), 41

get_fstab_contents()

(ai.backend.client.func.vfolder.VFolder

class method), 64

get_info() (ai.backend.client.func.session.ComputeSession

method), 57

get_logs() (ai.backend.client.func.session.ComputeSession

method), 57

get_or_create()

(ai.backend.client.func.session.ComputeSession

class method), 55

get_task_logs()

(ai.backend.client.func.session.ComputeSession

class method), 55

group() (ai.backend.client.config.APIConfig

property), 43

H

hash_type() (ai.backend.client.config.APIConfig

property), 44

hello() (ai.backend.client.func.session.ComputeSession

class method), 55

I

index() (ai.backend.client.request.AttachedFile

method), 68

info() (ai.backend.client.func.keypair.KeyPair

method), 46

info() (ai.backend.client.func.vfolder.VFolder

method), 62

interrupt() (ai.backend.client.func.session.ComputeSession

method), 56

invitations() (ai.backend.client.func.vfolder.VFolder

class method), 63

invite() (ai.backend.client.func.vfolder.VFolder

method), 63

K

KeyPair (class in

ai.backend.client.func.keypair),

45

Index 77

Backend.AI Client SDK for Python Documentation, Release 20.03.7

L

leave() (ai.backend.client.func.vfolder.VFolder

method), 65

list() (ai.backend.client.func.keypair.KeyPair

class method), 46

list() (ai.backend.client.func.scaling_group.ScalingGroup

class method), 50

list() (ai.backend.client.func.vfolder.VFolder

class method), 61

list_all_hosts()

(ai.backend.client.func.vfolder.VFolder

class method), 62

list_allowed_types()

(ai.backend.client.func.vfolder.VFolder

class method), 62

list_available()

(ai.backend.client.func.scaling_group.ScalingGroup

class method), 50

list_files() (ai.backend.client.func.session.ComputeSession

method), 58

list_files() (ai.backend.client.func.vfolder.VFolder

method), 63

list_hosts() (ai.backend.client.func.vfolder.VFolder

class method), 61

list_mounts() (ai.backend.client.func.vfolder.VFolder

class method), 64

list_templates()

(ai.backend.client.func.session_template.SessionTemplate

class method), 59

listen_events()

(ai.backend.client.func.session.ComputeSession

method), 58

login() (ai.backend.client.func.auth.Auth

class method), 40

logout() (ai.backend.client.func.auth.Auth

class method), 41

M

Manager (class in

ai.backend.client.func.manager), 47

mkdir() (ai.backend.client.func.vfolder.VFolder

method), 63

mount_host() (ai.backend.client.func.vfolder.VFolder

class method), 65

O

open() (ai.backend.client.session.AsyncSession

method), 33

open() (ai.backend.client.session.BaseSession

method), 31

open() (ai.backend.client.session.Session

method), 32

P

paginated_list()

(ai.backend.client.func.agent.Agent

class method), 39

paginated_list()

(ai.backend.client.func.keypair.KeyPair

class method), 46

paginated_list()

(ai.backend.client.func.session.ComputeSession

class method), 54

paginated_list()

(ai.backend.client.func.vfolder.VFolder

class method), 61

proxy_mode() (ai.backend.client.session.AsyncSession

property), 33

proxy_mode() (ai.backend.client.session.BaseSession

property), 31

proxy_mode() (ai.backend.client.session.Session

property), 32

put() (ai.backend.client.func.session_template.SessionTemplate

method), 60

Q

query() (ai.backend.client.func.admin.Admin

class method), 39

R

read_timeout()

(ai.backend.client.config.APIConfig

property), 44

rename() (ai.backend.client.func.vfolder.VFolder

method), 63

78 Index

Backend.AI Client SDK for Python Documentation, Release 20.03.7

rename_file() (ai.backend.client.func.vfolder.VFolder

method), 63

Request (class in ai.backend.client.request),

66

request_download()

(ai.backend.client.func.vfolder.VFolder

method), 63

Response (class in

ai.backend.client.request), 67

restart() (ai.backend.client.func.session.ComputeSession

method), 56

S

ScalingGroup (class in

ai.backend.client.func.scaling_group),

50

scheduler_op()

(ai.backend.client.func.manager.Manager

class method), 49

secret_key() (ai.backend.client.config.APIConfig

property), 44

Session (class in ai.backend.client.session),

32

SessionTemplate (class in

ai.backend.client.func.session_template),

59

set_config() (in module

ai.backend.client.config), 42

set_content() (ai.backend.client.request.Request

method), 67

set_json() (ai.backend.client.request.Request

method), 67

skip_sslcert_validation()

(ai.backend.client.config.APIConfig

property), 44

status() (ai.backend.client.func.manager.Manager

class method), 47

stream (ai.backend.client.request.AttachedFile

attribute), 68

stream_events()

(ai.backend.client.func.session.ComputeSession

method), 58

stream_execute()

(ai.backend.client.func.session.ComputeSession

method), 59

stream_pty() (ai.backend.client.func.session.ComputeSession

method), 58

StreamPty (class in

ai.backend.client.func.session),

59

U

umount_host() (ai.backend.client.func.vfolder.VFolder

class method), 65

undefined (in module

ai.backend.client.utils), 69

unfreeze() (ai.backend.client.func.manager.Manager

class method), 48

update() (ai.backend.client.func.keypair.KeyPair

class method), 45

update() (ai.backend.client.func.scaling_group.ScalingGroup

class method), 51

update_announcement()

(ai.backend.client.func.manager.Manager

class method), 49

update_password()

(ai.backend.client.func.auth.Auth

class method), 41

upload() (ai.backend.client.func.session.ComputeSession

method), 57

upload() (ai.backend.client.func.vfolder.VFolder

method), 63

user_agent() (ai.backend.client.config.APIConfig

property), 44

V

version() (ai.backend.client.config.APIConfig

property), 44

VFolder (class in

ai.backend.client.func.vfolder),

60

vfolder_mounts()

(ai.backend.client.config.APIConfig

property), 44

W

WebSocketContextManager (class in

Index 79

Backend.AI Client SDK for Python Documentation, Release 20.03.7

ai.backend.client.request), 68

WebSocketResponse (class in

ai.backend.client.request), 67

with_traceback()

(ai.backend.client.exceptions.BackendAPIError

method), 69

with_traceback()

(ai.backend.client.exceptions.BackendClientError

method), 69

with_traceback()

(ai.backend.client.exceptions.BackendError

method), 69

worker_thread()

(ai.backend.client.session.Session

property), 32

80 Index

	Quickstart
	Getting Started
	Installation
	Linux/macOS
	Windows
	Verification

	Client Configuration
	CLI Quickstart
	Display Help Text
	Login
	Creating and Using Compute Session
	Query running compute sessions
	Execute inline code
	Execute file
	Run code with specific resources

	Data Storage Folder
	Create a storage folder (virtual folder)
	Using virtual folder

	Using Interactive Apps
	API (KeyPair) Connection Mode
	Start a compute session
	Launch Terminal
	Launch Jupyter Notebook
	SSH into the Compute Session

	Command-line Interface
	Configuration
	Session Mode
	API Mode
	Checking out the current configuration

	Compute Sessions
	Listing sessions
	Running simple sessions
	Running sessions with accelerators
	Terminating or cancelling sessions

	Container Applications
	Starting a session and connecting to its Jupyter Notebook
	Accessing sessions via a web terminal
	Accessing sessions via native SSH/SFTP

	Storage Management
	Creating vfolders and managing them
	File transfers and management
	Running sessions with storages
	Creating default files for kernels

	Advanced Code Execution
	Running concurrent experiment sessions

	Session Templates
	Creating and starting session template
	Full syntax for task template

	Developer Reference
	Developer Guides
	Client Session
	Examples
	Synchronous-mode execution
	Asynchronous-mode Execution

	Testing
	Unit Tests
	Integration Tests

	High-level Function Reference
	Admin Functions
	Agent Functions
	Auth Functions
	Configuration
	KeyPair Functions
	Manager Functions
	Scaling Group Functions
	ComputeSession Functions
	Session Template Functions
	Virtual Folder Functions

	Low-level SDK Reference
	Base Function
	Request API
	Exceptions
	Miscellaneous Utilities

	Indices and tables
	Python Module Index
	Index

